Ozonolysis of the double bond of the unsaturated uronate residue in low-molecular-weight heparin and K5 heparosan.
نویسندگان
چکیده
Ozone is known to add across and cleave carbon-carbon double bonds. Ozonolysis is widely used for the preparation of pharmaceuticals, for bleaching substances and for killing microorganisms in air and water sources. Some polysaccharides and oligosaccharides, such as those prepared using chemical or enzymatic β-elimination, contain a site of unsaturation. We examined ozonolysis of low-molecular-weight heparins (LMWHs), enoxaparin and logiparin, and heparosan oligo- and polysaccharides for the removal of the nonreducing terminal unsaturated uronate residue. 1D (1)H NMR showed that these ozone-treated polysaccharides retained the same structure as the starting polysaccharide, except that the C4-C5 double bond in the nonreducing end unsaturated uronate had been removed. The anticoagulant activity of the resulting product from enoxaparin and logiparin was comparable to that of the starting material. These results demonstrate that ozonolysis is an important tool for the removal of unsaturated uronate residues from LMWHs and heparosan without modification of the core polysaccharide structure or diminution of anticoagulant activity. This reaction also has potential applications in the chemoenzymatic synthesis of bioengineered heparin from Escherichia coli-derived K5 heparosan.
منابع مشابه
E. coli K5 fermentation and the preparation of heparosan, a bioengineered heparin precursor.
Heparosan is an acidic polysaccharide natural product, which serves as the critical precursor in heparin biosynthesis and in the chemoenzymatic synthesis of bioengineered heparin. Heparosan is also the capsular polysaccharide of Escherichia coli K5 strain. The current study was focused on the examination of the fermentation of E. coli K5 with the goal of producing heparosan in high yield and vo...
متن کاملAnalysis of E. coli K5 capsular polysaccharide heparosan.
Heparosan is the key precursor for the preparation of bioengineered heparin, a potential replacement for porcine intestinal heparin, an important anticoagulant drug. The molecular weight (MW) distribution of heparosan produced by the fermentation of E. coli K5 was investigated. Large-slab isocratic and mini-slab gradient polyacrylamide gel electrophoresis (PAGE) were used to analyze the MW and ...
متن کاملQuantitation of heparosan with heparin lyase III and spectrophotometry.
Heparosan is Escherichia coli K5 capsule polysaccharide, which is the key precursor for preparing bioengineered heparin. A rapid and effective quantitative method for detecting heparosan is important in the large-scale production of heparosan. Heparin lyase III (Hep III) effectively catalyzes the heparosan depolymerization, forming unsaturated disaccharides that are measurable using a spectroph...
متن کاملEscherichia coli K5 heparosan fermentation and improvement by genetic engineering.
N-acetyl heparosan is the precursor for the biosynthesis of the important anticoagulant drug heparin. The E. coli K5 capsular heparosan polysaccharide provides a promising precursor for in vitro chemoenzymatic production of bioengineered heparin. This article explores the improvements of heparosan production for bioengineered heparin by fermentation process engineering and genetic engineering.
متن کاملPreparation and application of a 'clickable' acceptor for enzymatic synthesis of heparin oligosaccharides.
A 'clickable' disaccharide was prepared by treating the aldehyde precursor with hydroxylamine, followed by the catalytic hydrogenation and diazotransfer reaction. This disaccharide was successfully applied to the elongation of the backbone construction of ultralow molecular weight (ULMW) heparins using two bacterial glycosyl transferases, N-acetyl glucosaminyl transferase from Escherichia coli ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Carbohydrate research
دوره 346 13 شماره
صفحات -
تاریخ انتشار 2011